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Abstract. Using the methods of statistical mechanics we construct the partition function 
of a system of a large number of ZD cells that covers without pores or overlaps a flat 
surface. Each cell is defined by its position, area, perimeter and number of sides. Besides 
topological and space-filling constraints we impose new ones regarding the energy and 
maximum area of the cells. The entropy and free energy of the system are calculated and 
the mean values of the macroscopic parameters are determined in the equilibrium configur- 
ation. The results are compared with experimental ones for soap froths and metallurgical 
agreggates. 

1. Introduction 

Many systems in nature can be thought of as being made of cells that fill an available 
space. Examples are soap bubbles, metallurgical aggregates, undifferentiated biological 
tissues, etc. These are examples in three dimensions, but each of them can have a 
two-dimensional representation: soap bubbles can be constructed to simulate 2 D  froths 
[ 1-41; the observed micrographic section of a polycrystalline metal is two dimensional 
and biological tissues can form 2~ systems. 

In spite of evident differences between these systems, they present common features: 
they divide a given portion of Euclidean space ( 2 ~  or 3 ~ )  in cells and the coordination 
number, i.e. the number of edges that meet at the same vertex, is always three in 2~ 

or four in 3~ [ 1,5].  Also some structures, such as biological tissues, soap bubbles and 
metallurgical aggregates in a sintering process, evolve in time but the evolution is so 
slow that we can consider the system stable over relatively long periods of time (minutes 
or hours). 

The evolution of 2~ systems in time can be determined by the parameter F ~ ,  the 
second moment of the distribution of n, the number of neighbours of the cells, and 
by the variation of the average area or perimeter of the cells [5,6]. Aboav [7] showed 
that, in the case of a 2~ soap froth, the apparent stabilisation found by Smith [8] in 
his experiment is premature. It is not clear that a soap froth attains a final stable 
configuration. On the other hand, the sintering process seems to reach a stable state 
[l, 51. Probably metallurgical grains are also in a metastable configuration, but the 
evolution takes place at a very slow pace or it is stopped by defects and impurities 
[9]. The differences presented by those systems belong to their dynamics. 

Within von Neumann’s model [ 101 the variation of area of a given cell is proportional 
to the amount of gas that diffuses through its walls, i.e. it is proportional to the product 
of wall length (in 2 ~ )  and pressure difference (which is proportional to the curvature 
of the sides). Von Neumann concluded that (i) the rate of growth of each n-sided 
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bubble is the same at every time and ( i i )  the rate of growth of n-sided bubbles is 
proportional to the number of sides minus six. 

Glazier er a1 [4], in a recent work, studied 2~ soap froths and found that bubbles 
with the same number of sides can evolve at different rates, but on the average the 
evolution of n-sided bubbles follows von Neumann's results, namely, the average rate 
of growth of n-sided cells is proportional to ( n  -6). They have also found that the 
mean value of the area of n-sided cells, (a,,), does not follow Lewis's law, which states 
that (a" )  depends linearly on n. Marder [ 111 developed a simple theory to explain the 
evolution of (a,,) in time. 

The equilibrium configuration of ZD cellular systems has been studied by Rivier 
[ l ,  12-14] by applying the maximum entropy principle [15] and considering the 
geometrical and topological conditions as constraints on a generalised entropy. A 
relation between the variables is introduced in order to further maximise the entropy. 
The probability f(n, a )  of finding a cell of n sides and area a is calculated. The 
perimeter of the cells is also considered in one of the papers [13]. 

Following these ideas, we introduce here the energy of the cells as a constraint and 
take into account the fact that, for a given perimeter p ,  the maximum possible area of 
a cell is that of a regular polygon. 

A method is presented that enables us to take into account the energy terms that 
arise from perimeter, area and/or number of sides, as well as the geometric, non- 
holonomic constraint quoted in the previous paragraph. Different assumptions about 
the energy terms will lead to particular evolution conditions of the configurations of 
the system. 

Here we will assume the energy is proportional to the area and to the perimeter 
of the cells. The results show the utility of the method, give an insight on the nature 
of the problem and provide a basis for the choice of more appropriate sets of constraints 
to be imposed upon the system of interest. 

2. The theoretical model 

In order to apply the methods of statistical mechanics to cellular systems one must 
specify (i) the phase space and (ii) how to obtain the density function, i.e. the probability 
of finding the system in a given point of the phase space. 

We consider an array of a large number of two-dimensional cells which cover 
without overlaps or pores a flat surface of area A and are characterised by their 
position, area, perimeter and number of sides (equal to the number of neighbouring 
cells) [ 1,5]. 

Each configuration of this cellular system is associated with a point in a generalised 
phase space of coordinates n , ,  n 2 , .  . . , nN; p l ,  p 2 , .  . . , p N ;  a , ,  a 2 , .  . . , U N ;  
x, , x2, . . . , x N ;  ni, pi, ai and xi being the number of sides, perimeter, area and centre 
of mass coordinates of the i cell, and the density function is defined as 

(1) 

The maximum entropy principle [ 151, as discussed in [ 131, will be utilised as a tool 
to derive the statistical mechanics of the problem. The aim of the method is to obtain 
the configuration of maximum entropy of the system consistent with the set of con- 
straints. It associates different Lagrange multipliers to each constraint. As area and 
perimeter are linked through a non-holonomic relation, this assumption may be 

" ~ ( n  , P  a N , x N ) = p ( n i ,  - * - ,  n N ; ~ i , .  , P N ;  a i , .  - 9 an; x i , .  - .  , x N ) .  
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redundant here. In fact, we will see in § 3 that the Lagrange multipliers associated 
with perimeter and area are not independent. 

Also, one should be aware that we are applying a statistical mechanics technique 
to a system that has a large number of cells, but each element is a macroscopic entity, 
and not a microscopic one. Each cell is not characterised by, for example, position 
snd momentum, as in a gas of particles, but by macroscopic parameters such as the 
number of sides, perimeter, area and position. The total number of cells, N, is also a 
variable of the problem. So, we are working in a kind of grand canonical ensemble 
that we call the super ensemble. 

2.1. The constraints 

A geometrical, non-holonomic constraint relates the area and perimeter of each cell. 
For a given perimeter p i ,  and number of sides ni, there is a maximum possible area 
amax that is the area of the regular polygon of ni sides: 

pf cotan(.rr/ni) 
4ni amax = 

Before discussing the other constraints we define a sum operator over the phase 
space volume: 

3 Y = ‘f fi IOmdpj Ioa”” daj dx,. 
N = O j = l  n -3 A 

Now, the normalisation condition is 

E p ( n N , p N , a N , x N ) = l  

the full filling of the area is 
N E a jp (nN,pN,aN,xN)=A 

j=l 

and the mean number of cells is 

E Np(nN,pN, a N , x N ) = ( ~ ) .  

(3) 

(4) 

Also, we must take into account the topological constraint given by the Euler 
condition to fill a 2~ flat space: the average number of sides must be six [ 5 ,  131 (for 
a coordination number 2 = 3). Then 

N 

/ = 1  
E c n,p(n”,pN, a N , x N ) = 6 ( N ) .  (7) 

The mathematical expression of the geometrical constraints is given by (4)-(7). 
The total energy of the system is introduced as an additional condition. We consider 
two terms of energy: the internal energy of the cells and the tension between them. 
Within a very simple model, the energy of interaction between the cells is taken as 
proportional to the length of contact [ l ,  131, i.e. 

N 

E P = i u  1 pj 
/ = 1  

where U is a linear energy coefficient, and the factor 4 is introduced in order not to 
count the energy twice. 
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The internal energy is considered as proportional to the size (area) of the cell, and 
to the temperature (energy) of the gas (matter) inside it. Then if the system is assumed 
to be in equilibrium with a thermal bath, we have 

N 

Ei = R (  T )  aj =a( T ) A  
/ = 1  

(9) 

R( T )  being the thermal energy per unit area, an increasing function of temperature. 
The total energy is 

E = E p + E i .  (10) 

Equations (9) and (10) yield to the last constraint: 
N 

E ( t u p j + R ( T ) a j ) p ( n N , p N , a N , x N ) = ( E ) .  
1 = 1  

2.2. The generalised entropy 

The density function p ( n N ,  p N ,  aN, xN), hereafter called p, may be determined within 
the maximum entropy formalism [12, 13,151 by defining a generalised entropy: 

N 
? = S - a 1 E p - a 2 E p  c (&7p,+Ra,) 

j=l  

where the ai are Lagrange multipliers and S is 

S =  - k ,  p In(CNpN!) (13) 

where kB is the Boltzmann constant, C a dimensional factor and N !  is introduced to 
count correctly the number of states (i.e. to avoid the Gibbs paradox). 

The maximum value o f ?  defines the state of statistical equilibrium. Soap froths 
and other cellular systems can be considered in equilibrium because they are invariant 
under elementary topological transformations (Aboav- Weaire law [ 51); then, as dis- 
cussed in [ 131, they are 'very near, or at, a fixed point under structural transformations'. 

Within these considerations, the equilibrium density function is obtained by 
extremising ? and it gives 

N 

p = ( C N N ! Z ) - '  exp( - [ f x z a p j  + (x&+ x 3 ) a j  + x,nj] - x 5 N )  (14) 
j =  1 

where 

Xi  = CYi/ kB 

and 

Z = exp( 1 + x , )  
N 

= (C"!)-' exp - [ f x 2 a p , + ( x 2 R + x 3 ) a J + x , n J ] - x 5 N  ( ] = I  

is the partition function. 
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Now the normalisation condition (4) is included in Z and ( 5 ) - ( 7 )  and (11) may 
be written as 

( 1 7 4  

- A  (176) 

1 az 
z ax, 

1 az 
z ax3 

1 az 
z ax, 

1 az 
z ax5 

- ( E )  

(17c) - 6 ( N )  

- ( N ) .  ( 1 7 4  

Then, from the knowledge of the partition function Z and the values of the area 
A and energy ( E )  of the system, we can determine the four unknown Lagrange 
multipliers. 

3. Determination of the partition function and the Lagrange multipliers 

After a straightforward calculation, the partition function, defined in (16 ) ,  is 

Z = exp (exp(:5)AQ) 

where Q is defined as 

Q = exp(-x,n) lom dp exp(-ix2ap) [opzKn da exp( - (x2Q + x 3 ) a ]  

and 

X 

n = 3  

cotan( T /  n)  
4n  

K n  = 

The constraint equations (17a,b,c,d) can be written as 

A aQ 
- exp(-x5)- - = ( E )  = E (  N )  C ax2 

- exp( -x5) - A a Q  - = A = q ( N )  
C ax3 

A a Q  -exp(-x,) - - = 6 ( N )  c ax, 

A 
exp(-x5) c 0 = ( N )  

where E is the average energy and q the average area per cell. 
Now, from (19), (21a)  and (21b), one obtains 

x3 = -x&. 
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This implies, as should be suspected from the expression of the constraints, that the 
system is overconstrained: the average size of the cells is already restricted by energy 
(x2) and geometry (x,) considerations. The constraint over the perimeter acts also 
over the area because of the non-holonomic constraint relating the maximum value of 
the area of a cell with n, the number of sides, and p,  the perimeter (2). 

We define now the average perimeter energy per cell as 
N 

&p=&7 2 $ T p j ( ~ p N ) - ' = E - a q  
j = l  

and rewrite the constraint equation (21a) as 

After some calculations, equations (21a') and (216) yield 

x2 = 3 E p l  

and (2 1 c)  becomes 
00 f exp(-x,n)Knn = 6 2 exp(-x,n)K, 

n = 3  n = 3  

which can be numerically solved and gives 

x4 = 0.326 15. 

We can now calculate the value of 7, solving (216) and using (24): 

where 
oc 

@ k =  2 exp( -x ,n )~ ; .  
n = 3  

The @ k  are well defined quantities since x4 is a known value given by (26). 
Using (216), (21d) and (27) we have 

81U5C 
exp( -x5) = - 

l 2 8 ~ ; @ ~  

and 

As is to be expected, the mean number of cells is inversely proportional to the 
square of the energy per cell (as ep goes as the perimeter, ( N )  goes as (area per cell)-'). 
Equation (29), together with (216), yields 

The problem is now formally solved. The partition function is 
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and the distribution function is 

4. The entropy and the free energy 

The entropy is obtained by substituting (33) in (14) and using the constraint equations 
(21): 

[ ( 81u5C)] 3a2@,A 
S=kB 4+6x4-In - -. 

128@*~; 8&3D2 (34) 

The dimensional constant C N  is the volume in the generalised phase space of a state 
represented by the point (nN, p", aN ,  x"). As C has dimensions of (length)' we define 
A such that 

C=A' (35) 

where A has dimensions of length and is the analogue of Planck's constant h in quantum 
statistical mechanics. We have, then, a lowest possible value for 7. Equation (34) has 
a physical meaning for 

T / >  A 2  (36) 

which, through (26) and the numerical values of @, and Q 2 ,  implies that 

4.8aA/2. (37) 

For values of E ~ >  4.8uA f 2 or t) > A' the entropy is always positive and behaves as 
shown in figure 1. (Below these limits S goes through a maximum and then decreases.) 

The total energy of the system is 

+ n( T)A. E = E(N)=- 
8@2Ep 

3a2@,A 

There are two terms of energy. The energy of interaction between cells, which is 
concentrated in the perimeters, decreases when one has few big cells in the system, 
i.e. it is inversely proportional to cp.  When the cells are small, has a low value but 
the total perimeter (and the total energy) increases. The second term of (38) corresponds 
to the internal energy, which is constant for a fixed temperature. 

If we consider an adiabatic equilibrium evolution ( ( E )  constant), higher values of 
ep (the cells grow up) will increase the temperature of the system, transforming 
interaction energy into internal energy. 

On the other hand, the current experimental situation is the isothermal one. 
Experimental results show that the size of the cells increases in time [2-4,7]. In that 
case, the second term in (38) is constant and the total energy decreases. A final state 
of equilibrium should be attained when the free energy is a minimum. 

The free energy is 

F =  E - TS. (39) 
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’* t 

Figure 1. Plot of the entropy per unit area, S / A ,  as a function of the mean perimeter 
energy, E ~ .  The units of S / A  and E~ are respectively k , / A 2  and u h / 2 .  The arrow indicates 
the lower limit of as discussed in the text. 

We are interested in the dependence of F on cpr for a fixed temperature. Then we write 

A plot of F I A  as a function of sp is shown in figure 2.  
If the temperature is low, i.e. T G  u A / 2 k B ,  the free energy is monotonically decreas- 

ing in E ~ ,  implying that, if cp is allowed to vary, the system will evolve towards higher 
values of cp or 7, without a final stable configuration. This is the case of macroscopic 
cellular systems. 

If the temperature is high, i.e. T 3  U h / 2 k ~ ,  the free energy presents a maximum?. 
In this case the final configuration will depend on the initial conditions. For a low 
initial value of cp, i.e. in the region to the left of the maximum of the free energy, the 
cells tend to shrink. For a high value of E ~ ,  in the region to the right of the maximum 
of F, the system evolution is such that the cells, on average, always grow up. 

The characteristic temperatures are different for different systems because of the 
values of IT and A. For a soap froth and other macroscopic cellular systems it is 
reasonable to look at the low-temperature free energy as the interface energy is much 
higher than kBT 

Also, as is to be expected, the free energy is entropy dominated at high temperatures 
( T  = 1.5) and also for low values of sp, because in that case one has a high number 
of cells and thus a high entropy. Both energy and entropy tend to reduce the free 
energy when + CO, i.e. when the cells grow up, in agreement with the experimental 
results. However, in that limit one has a small number of cells, N, in the system and 
statistical arguments may no longer be valid. 

t The free energy also exhibits a minimum for values of 
This is a region without physical meaning. 

< 4.8uA/2, i.e. in the region of negative entropy. 
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Figure 2. Plot of the free energy per unit area, F / A ,  as a function of the mean perimeter 
energy, E ~ .  The units of F / A ,  and T are respectively u/2A, oh12 and oA/2kB.  The 
arrow indicates the lower limit of cp as discussed in the text. 

Although the system does not have a stable configuration, in terms of a minimum 
of the free energy, the evolution is very slow when compared with the characteristic 
times required to attain the statistical equilibrium, as was discussed in 0 2. We assume 
it goes in a ‘quasistatic’ way through a succession of states of statistical equilibrium, 
for which the thermodynamical variables and the statistical distribution are well defined. 

Also, one expects that if the system is isolated it will exhibit a different behaviour. 
It should be interesting to examine the evolution, if any, of a froth under adiabatic 
conditions. 

5. Determination of the mean values and distributions of area, energy and number of 
sides 

From the knowledge of the density function one can determine the relative number 
of cells with a particular area, energy (perimeter) and number of sides. These results 
together with the entropy and free energy, already discussed, provide a complete view 
of a given state of the system. 

5.1. Average area 

We are interested in two values: the average area per cell, 7, given by (27), and the 
average area of an n-sided cell, that can be calculated ab initio from 
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where the numerator is the sum of the areas of all n-sided cells and the denominator 
is the number of n-sided cells. Using (33)  one obtains 

A plot of (a,) as a function of n is shown in figure 3. The dependence of (U,,) on n 
is the same as the one of regular polygons with different numbers of sides but equal 
perimeters (compare (42) and (20) with (2)). It implies that the sides of low-n cells 
must be longer, on the average, than those of high-n cells. This is unreasonable if 
cells with different numbers of sides are going to fit without pores or overlaps. A 
restriction on the mean value of the side lengths should be imposed to improve the 
model. We will return to this point in § 6 .  

O.' t 
0 1 4 8 12 

n 

Figure 3. Plot of the average area of the n-sided cells, in units of &;/u2, as a function of 
the number of sides, n. It exhibits the same dependence on n as the area of regular polygons 
with equal perimeters. 

5.2. Average energy 

The average total energy and perimeter energy are given by E and ep respectively. One 
is also interested in the mean energy of n-sided cells: 

N / 

and 

E ( n ) =  Ep(n)+fl(u,). (44)  

E p ( n )  = Ep (45)  

We obtain that ep(n)  is independent of n :  

which is coherent with the results obtained for (U,): the mean perimeter of the cells 
is independent of n. But this is not in agreement with experiments and numerical 
simulations. A comment on this point is also presented in 5 6 .  

5.3. Distribution of the number of sides 

The relative number of n-sided cells, w(n) ,  can be calculated as 
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Using (33) we get 
- I  

w ( n )  = exp(-x4n)Kn ( n = 3  f exp(-x4n)Kn) . (47) 

This result differs from that of Rivier and Lissowski [12] because of the factor K,. 
A plot of w ( n )  against n is shown in figure 4. One can see that w ( n )  decreases 

when n increases and there is not a maximum for n = 5 or 6 as in the results of [2,3,7]. 
Nevertheless, when the froth evolves in time there is a shift of the maximum of the 
distribution to lower values of n [7]. This result could then be interpreted as the t + CZ, 

configuration of the distribution in n. However, the evolution predicted by the model 
refers only to the average cell size ( E ~  or v), the distribution w ( n )  does not change 
with time, energy or temperature. 

The second moment, p 2 ,  of the distribution in n was also calculated: 
m 

p2 = 2 w ( n ) ( n  -6)* = (n2)-36 
n = 3  

or 
CE cc - 1  

p2 = n = 3  exp(-x4n)Knn2 ( n = 3  c exp(-x4n)Kn) -36. (49) 

The numerical result is 

1 1 2  = 10.16 (50) 

which is bigger than the experimental values. The evolution of the froths presented 
by Weaire and Kermode [2,3], Glazier et a1 [4], Aboav [7] and Anderson et a1 [16] 
exhibits a value of p2 that increases with time. The high value obtained here for p2 
is further evidence that this distribution in n could be regarded as a limiting one. 

n 

Figure 4. Plot of the relative number of n-sided cells, w ( n ) ,  as a function of n. 

6. Discussion and conclusions 

We have presented a formalism to study a random cellular structure in two dimensions 
taking into account geometrical and physical constraints. The constraints considered 
in the description of the method were 

(i)  the full filling of the space, 
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(ii) the Euler condition ((n)  = 6), 
( i i i )  the interaction and bulk energy, and 
(iv) a geometrical non-holonomic constraint relating the area, perimeter and number 

of sides. 
But one can easily modify them or add other ones. 

Within this simple model, it is possible to calculate the partition function and the 
thermodynamical variables. 

We have obtained a distribution function of the number of sides, w ( n ) ,  that seems 
to correspond to the t + CO configuration of a soap froth. However, the mean value of 
the energy of perimeter cp( n )  is independent of n. That means that the average length 
of the sides goes as n-'. This is not geometrically sound if the cells must fit to cover 
the surface without pores or overlaps. One must then impose a new geometrical 
constraint on the perimeter, introducing a n-independent mean value for the side 
lengths (the simplest suitable relation between the side lengths and n) .  The average 
area of n-sided cells will also be affected by this new constraint. 

We remark that the main difference between this calculation and that of Rivier et 
al  [5, 12-14] is that we consider independent constraints. A relation between the 
perimeter and the number of sides is obtained in [13], assuming some constraints are 
not independent. We expect that taking a common mean value for the side lengths, 
one recovers those results. Calculations in this sense are now in progress. 

On the other hand, the behaviour of the free energy as a function of appears to 
be in agreement with that of real systems. The free energy depends on the value of 
the temperature, compared with a critical value T,: 

( i )  if T < T, the free energy is a monotonically decreasing function of cp and there 
is no final stable configuration; 

(ii) if T > T, the free energy presents a maximum. If initially cp lies to the left of 
the maximum the evolution is such that cp will decrease. On the other hand, if the 
initial value of cp lies to the right of the maximum, the cells grow up and there is no 
final stable configuration (although w(  n )  remains invariant). 

The value of T, is approximately given by k,T, = aA/2, where the values of U and 
A are typical of each system. 

The model must be improved. Firstly one needs to take into account the energy 
related to the angle between the sides of the cell. A stable vertex has the three sides 
forming angles of 120" [l]. Any deviation should increase the energy. This term will 
introduce a dependence of the energy on the number of sides. 

Also, as was mentioned before, a common average length of the sides must be 
imposed. 

Calculations taking these two contributions into account are now in course. We 
expect a better agreement with experimental and numerical simulation results for soap 
froths and metallurgical aggregates. 

Anyway, it is clear that, besides the geometrical constraints, energy considerations 
are relevant to a correct description of those systems and that the free energy has a 
qualitative behaviour which corresponds to the evolution in time of soap froths. 
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